For full functionality of this site it is necessary to enable JavaScript.


‘World’s smallest integrated imaging system for guided surgery’

The objective of the Biomedical theme is to work towards developing the World’s smallest integrated imaging system for guided surgery. In the future, surgeons will require the ability to generate high quality, diagnostic images deep within the body using micro-scale instrumentation such as arterial guidewires. This Theme will develop major novel innovations in micro-scale cameras and surgical platform integration technologies, multi-spectral diagnostic imaging and in-body optical powering and data transmission.

Examples of active research topics are highlighted below.


The Biophotonics@Tyndall team is pursuing world-class research in neonatal health care. We focus on collaborative work with clinicians from Cork University Hospital (CUH) and GPX Medical as our industrial partner. The aim of this project is to translate and deliver Gas in Scattering Media Absorption Spectroscopy (GASMAS) technology into a non-invasive bed side clinical device, to monitor lung function and tissue oxygen saturation in neonates. This technology will assist the clinicians in diagnostics of pulmonary desease of the most vulnerable patients.

Why is this technology needed?

Newborn respiratory distress syndrome (NRDS) happens when the neonate’s lungs are not fully developed and cannot provide enough oxygen, causing breathing difficulties. NRDS is a major cause of morbidity and mortality in preterm infants. 90% of infants born within 22-28 weeks of gestational age and 50% of newborns delivered within 30-32 weeks of gestational age will suffer from it.

The current diagnostics of NRDS involves X-ray and ultrasound imaging, which together with pulse oximetry provide static information about pulmonary function, gas filling in the lungs and blood oxygen saturation but not about localized alveolar composition.

The clinical translation of GASMAS technology will allow spectroscopic analysis of the gases enclosed in the lungs of the newborn continuously and in a non-invasive way. This novel light-based technology has the potential to reduce the use of harmful radiation in the diagnostics of NRDS and track the newborn’s response to respiratory treatment in real time.

Tissue Recognition

Modern treatment of brain tumours, such as a glioblastoma multiforme (GBM), requires surgical intervention. The success of the surgery is directly dependent on the percentage of the tumour tissue that remains in the brain after the operation. Unfortunately, current methods of tumour identification are subjective, especially at the interface with the healthy brain tissue, leading to an increased rate of tumour recurrence and reduced life expectancy. To reduce the risk of recurrence, a quantitative method of tumour identification is needed.

Here in BioPhotonics group at the IPIC center, in collaboration with neurosurgeons in Cork University Hospital, we are working to address this challenge by building a multi-wavelengths tissue recognition (TR) instrument. The TR project aims to take advantage of unique optical properties of naturally occurring biomarkers to distinguish between tumour and healthy brain tissue. By illuminating the tissue with distinct wavelengths and simultaneously measuring the reflected and fluorescent light, it is possible to quantify the biomolecule concentration and identify the tissue type using machine learning.

In collaboration with our partners in MedPhab, we are also developing a multi-wavelengths, micro-optical probe for surgical guidance in liver cancer.

Acousto-Optic Tomography 

Acousto-optical tomography (AOT) has huge potential to image deep into biological tissue. At IPIC we have been combining AOT techniques with heterodyne holography and wavefront shaping to establish new methods that can help propel AOT in the clinical realm. In AOT, a laser illuminates a medium undergoing ultrasound. The light travels through the ultrasound focus within the medium and becomes frequency shifted (the same frequency as the ultrasound). Using various detection techniques, this ultrasound-modulated signal can be distinguished from the background laser light. Therefore, the location of the “tagged” light within the media is known. By moving the ultrasound focus within the media and image can be created.

Do you Want to join
The Tyndall IPIC Team?

We are seeking best-in-class researchs to join our internationally renowned team